Molecular in My Pocket...

Hematopathology

Prepared by the Association for Molecular Pathology (AMP) for laboratory and other health care professionals. The content does not constitute medical or legal advice, and is not intended for use in the diagnosis or treatment of individual conditions. See www.amp.org for the full "Limitations of Liability" statement.

For More Educational Resources: www.amp.org/AMPEducation

Myelodysplastic Syndromes (MDS)

<table>
<thead>
<tr>
<th>Cytogenetics</th>
<th>Good Prognosis</th>
<th>Intermediate Prognosis</th>
<th>Poor Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate Prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor Prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mutation Details

- **Good Prognosis**:
 - SF3B1 mutation (strongly correlated with ring sideroblasts)
 - With SF3B1 mutation can diagnose MDS with ring sideroblasts (MDS-RA) with only 5% ring sideroblasts rather than 15% without the mutation

- **Intermediate Prognosis**:
 - ASXL1, SRSF2, STAG2, EZH2, DNMT3A, TET2, TP53 mutation

- **Poor Prognosis**:
 - ASXL1, SRSF2, STAG2, EZH2, DNMT3A, TET2, TP53 mutation

Progression Mutations

- RAS, FLT3, JAK2, NF1, RUNX1, ETV6, SETBP1

Chronic Myelogenous Leukemia (CML)

- t(9;22)(q34;q11.2) BCR-ABL1
 - Usually M-BCR (p210) breakpoint
 - Rarely m-BCR (p190) or m-BCR (p230) breakpoints
 - ABL1 kinase mutations confer TKI resistance
 - Particularly T315I
 - Transformation to accelerated phase (AP) or blast phase (BP) often accompanied by extra Ph chromosome, +8, +19, or i(17)(q10)

Polycythemia Vera (PV)

- JAK2 V617F (~50% of cases)
 - JAK2 exon 12 mutation (~5% of cases)

Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF)

- JAK2 V617F (~50% of cases)
- CALR exon 9 indel mutations (~30% of cases)
- MPL W515K/L (~5% of cases)

*"Molecular in My Pocket" reference cards are educational resources created by the Association of Molecular Pathology (AMP) for laboratory and other health care professionals. The content does not constitute medical or legal advice, and is not intended for use in the diagnosis or treatment of individual conditions. See www.amp.org for the full "Limitations of Liability" statement."
Chronic Myelomonocytic Leukemia (CMML) (MDS/MPN “bridging” category)
- Most patients: TET2 (<50%), SRSF2 (~30-50%), ASXL1 (40-50%, poor prognosis if missense mutations are excluded), KRAS and NRAS (myeloproliferative phenotype), SETBP1 (poor prognosis), JAK2 (not specific)

Atypical Chronic Myeloid Leukemia (aCMML)
- Overlap MDS/MPN neoplasms
- BCR-ABL1 negative
- Cyto genetic: +8, i(17q), -7, del(7q), del(20q), +9, del(13q)
- Molecular genetics: SETBP1 (10-20%), exon 4 mutations with D868N most common, associated with -7 and i(17q), ASXL1 (65%), SRSF2, TET2 (-40%), KRAS, NRAS, EZH2, ETNK1, CBL, JAK2, (~10-30%), CSF3R (<1%, T618I most common), CALR (rarely or never present)

Juvenile Myelomonocytic Leukemia (JMML)
- Somatic PTPN11 (20-30%), KRAS and NRAS (75-80%) mutations
- Clinical NFI disease or NFI mutation
- Germ line CBL mutation (10-15%), Y371 common mutation hotspot

Myeloid/Lymphoid Neoplasms associated with Eosinophilia
- PDGFRα rearrangement (often del(4)(q12);IP11L-PDGFRα)
- FGFRL rearrangement (various partners)
- t(8;9)(p22;p24.1)PCMT1-JAK2

Myeloid Neoplasms with Germ line Predisposition
- AML with germ line CEBPA mutation
- Myeloid neoplasm with germ line DDX41 mutation
- Associated with platelet disorders
 - RUNX1, ANKRD26, ETVI6 mutation
 - Associated with other organ dysfunction
 - GATA2 mutation
 - JHML type mutations
- Langerhans histiocytosis, histiocytic sarcoma, disseminated juvenile xanthogranuloma, Erdheim-Chester disease, follicular dendritic cell sarcoma
- BAF160E mutation

T lymphoblastic leukemia/lymphoma (T-ALL)
- Translocations involving T-cell receptor (TCR); error during TCR gene rearrangements
 - t(9;34)(q34;q34) NUP214-ABL1 strictly associated with T-ALL (~60%)
 - MTC translocations (~6-8% cases)
 - NOTCH1 (70% cases), CDKN2A (cryptic deletions ~70% cases) mutations
 - Early T-precursor Acute Lymphoblastic Leukemia (ETP ALL)
 - FLT3, NRAS/KRAS, DNMT3A, IDH1/2
 - Anaplastic Large Cell Lymphoma, ALK-negative (ALCL, ALK-) (subset have rearrangement at 6q25 (region with DUSP22 and IRF4) - good prognosis
 - TP63 rearrangement - poor prognosis
 - Anaplastic Large Cell Lymphoma, ALK-positive (ALCL, ALK+)
 - Chromosome translocations involving ALK gene at 2p23
 - t(2;5)(p23;q35); ALK-NPM1
 - Other ALK rearrangements

B-cell Neoplasms

B Lymphoblastic Leukemia (B-ALL)
- Good prognosis
 - Hyperdiploid (extra chromosome copies are not random: X, 4, 14, 21 most common)
 - t(1;22)(p13;q22);ETVI6-RUNX1 (typically cryptic fusion)
 - Common in children, ~25% of B-ALL
- Intermediate prognosis:
 - t(5;14)(q31;q32); IL3-IGH, associated with eosinophilia
 - Poor Prognosis
 - t(9;22)(q34;q11.2); BCR-ABL1
 - Usually m-BCR (Most pediatric cases have p190; in adults, 50% is p190 and 50% is p210)
 - t(v;1q23); KMT2A rearranged
 - Most common leukemia in infants <1 year old; may occur in utero
 - Common translocation partners AF4 (4q21) and EFL (19p13)
 - frequent FLT3 overexpression
- Hypodiploid
 - Most commonly lost chromosomes include 3, 4, 7, 9, 13, 17, and 20
 - Worse prognosis: near haploid (25-29 chromosomes) and low hypodiploid (33-39 chromosomes)
- Intrachromosomal amplification of chromosome 21 (iAMP21)
 - Defined by multiple copies of RUNX1, not detectable by standard karyotyping
- BCR-ABL1 like B-ALL
 - Lacks BCR-ABL1 translocation
 - 15-20% pediatric ALL
 - CRLF2 or EPOR rearrangement
 - JAK mutations
 - CDKN2A/B or IKZF1 deletion/mutation
 - Other translocations involving tyrosine kinases

Follicular Lymphoma (FL)
- t(14;18)(q32;q21) (80-90% cases); IGH-BCL2
 - Cases without t(14;18) are usually BCL2 negative with increased CHECK1 expression
 - FL cases have ~6 cyto genetic abnormalities (17p and 6q23 worse prognosis)
 - Complex karyotype correlates with poorer prognosis
 - BCL6 rearrangements more common in grade 3B tumors

B-cell Prolymphocytic Leukemia
- t(8;14)(q24;q32)
- Complex karyotypes
- MYC translocations (~50% cases)
 - Deletion 17p (~50% cases), associated with TP53 mutations, deletions of 13q14 (~30%), 11q23, rare trisomy 12.
 - Mutations in TP53 and ATM (~50%)

Mantle Cell Lymphoma (MCL)
- t(11;14)(q13;q32); CCND1-IGH
- Common secondary abnormalities: loss of 1p, 13q, 17p, gains in 3q.
 - Numerical abnormalities include +3, +12, -8, -9, -X, -Y
 - t(8;14)(q24;q32) occurs rarely and has worse prognosis; t(0;14) and CCND1 rearrangement is called a “double hit” MCL

Burkitt Lymphoma (BL)
- MYC rearrangements
 - t(8;14)(q24;q32); MYC-IGH
 - t(2;8)(p12;q24); IGK-MYC
 - t(8;22)(q24;q11); MYC-IGL

Hairy Cell Leukemia (HCL)
- BAF160E mutation (~95% of cases)
- >85% HCL cases demonstrate somatic hypermutation in VH genes
- MAP2K1 mutations = Hairy Cell Leukemia variant (HCL-v)

Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)
- Good Prognosis
 - del(13)(q14) most common cytogenetic abnormality
 - Mutated VH
 - Intermediate Prognosis
 - Trisomy 12 (a/w NOTCH1)
 - del(6q)
 - Poor Prognosis
 - 17p deletion
 - del(11)(q22-23) (a/w SF3B1)

Extranodal Marginal Zone Lymphoma, MALT type
- t(11;18)(q21;q11) – pulmonary and gastric MALT
 - t(14;18)(q32;q21) - orbital and salivary gland MALT
 - t(3;14)(p14;q32) - thyroid, orbital, skin MALT
 - t(1;14)(p12;q23)

Lymphoplasmacytic Lymphoma (LPL) and IgM Monoclonal Gammapathy of Unknown Significance (MUGS)
- 6q23 deletion most common cytogenetic finding in LPL
 - MYD88 p.L265P (~90% of cases)
 - CXCR4 mutation (~30% of LPL, ~20% of IgM MUGS)

Diffuse Large B-Cell Lymphoma (DLBCL)
- t(14;18)(q32;q27) is the most common translocation in DLBCL
- ALK-positive large B-cell lymphoma
 - t(2;17)(p23;q23); CLTC-ALK
- Double/Triple-Hit Lymphoma
 - MYC rearrangement with BCL2 and/or BCL6 rearrangement

T-cell Neoplasms

T-cell Large Granular Lymphocyte Leukemia (T-LGL)
- STAT3 mutation
- STAT5B mutation - poor prognosis

Peripheral T cell lymphoma, NOS (PTCL-NOS)
- TET2, DNMT3A, VAV1
- GATA3 vs TBI2 profiles
- Complex cytogenetic abnormalities common; t(5;9)(q33;q32) 7R+7Y in follicular variant
- Clonal rearrangements of TRB and TRG, IGH rearrangements in ~30% cases

Follicular T cell lymphomas (incl. angioimmunoblastic T cell lymphoma, ALTL)
- RHOD, GZMB, TET2, DNMT3A, IDH2
- T-cell Prolymphocytic leukemia (T-PLL; with inv(14) or t(4;14)ATM, STAT5B, JAK1, JAK3
- Complex karyotypes common with numerical and structural abnormalities including inv(14), t(6;14), t(8;10), -11, del(11q), -22, -13, TCL1, TCL1A (TCL1) rearrangements at 14q32. Multiple submicroscopic abnormalities