Myelodysplastic Syndromes (MDS)

<table>
<thead>
<tr>
<th>Good Prognosis</th>
<th>Intermediate Prognosis</th>
<th>Poor Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Binding Factor (CBF) AML</td>
<td>Blasts with monocytic differentiation and fine azurophilic granules</td>
<td>With or without monocytic features, often associated with basophilia and multilineage dysplasia</td>
</tr>
<tr>
<td>t(8;21)(q22;q22); RUNX1::RUNX1T1</td>
<td>Associated with gingival myeloid sarcoma</td>
<td>inv(3)(q21;q26.2) or t(3;3)(q21;26.2); GATA2, MECOM</td>
</tr>
<tr>
<td>Blasts with salmon/pink granules</td>
<td>More common in children (10% pediatric AML)</td>
<td>Abnormal megakaryocytes</td>
</tr>
<tr>
<td>Predominant in younger patients</td>
<td>Normal Karyotype, mutation status unknown (or rarely negative)</td>
<td>Multilineage dysplasia</td>
</tr>
<tr>
<td>>70% of patients show additional chromosome abnormalities including sex chr loss, del(9q)</td>
<td></td>
<td>Common secondary karyotypic abnormalities include -7 (50% cases), del(5q) and complex karyotypes</td>
</tr>
<tr>
<td>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB::MYH11</td>
<td></td>
<td>AML with myelodysplasia related changes (AML-MRC)</td>
</tr>
<tr>
<td>Abnormal eosinophils</td>
<td></td>
<td>≥50% dysplasia in ≥2 lineages (if no NPM1 mutation)</td>
</tr>
<tr>
<td>Worse prognosis in CBF AMLs when Kit is mutated</td>
<td></td>
<td>History of MDS</td>
</tr>
<tr>
<td>Acute Promyelocytic Leukemia (APL) with t(15;17)(q22;q12); PML::RAR</td>
<td>Associated with disseminated intravascular coagulation</td>
<td>MDS-defining cytogenetic abnormality (see MDS section)</td>
</tr>
<tr>
<td>-</td>
<td>APL with PML::RAR is sensitive to ATRA/arsenic treatment</td>
<td>Mutations in ASXL1, BCR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2</td>
</tr>
<tr>
<td></td>
<td>APL variants like ZBTB16::RAR and STAT5B::RAR</td>
<td>11q23 (non t(9;11), many partners)</td>
</tr>
<tr>
<td></td>
<td>fusions are resistant to ATRA</td>
<td>t(9;22) (q34;q11.2); BCR::ABL1</td>
</tr>
<tr>
<td></td>
<td>NPM1 mutation without FLT3-ITD</td>
<td>FLT3-ITD mutation</td>
</tr>
<tr>
<td></td>
<td>AML with in-frame bZIP mutated CEBPA</td>
<td>~20% AML cases</td>
</tr>
<tr>
<td></td>
<td>FLT3-ITD mutations occur in 22-33% of cases (unclear prognosis)</td>
<td>ASXL1, TPS3, RUNX1 mutation</td>
</tr>
</tbody>
</table>

Mutations

- **SF3B1** mutation (strongly correlated with ring sideroblasts)
- With **SF3B1** mutation can diagnose MDS with ring sideroblasts (MDS-RS) with only 5-10% ring sideroblasts rather than 15% without the mutation
- **Chronic Myelogenous Leukemia (CML)**
 - t(9;22)(q34;q11.2); BCR::ABL1
 - Usually M-BCR (p210) breakpoint
 - Rarely m-BCR (p190) or μ-BCR (p230) breakpoints
 - ABL1 kinase mutations confer TKI resistance
 - Particularly T315I
 - Transformation to accelerated phase (AP) or blast phase (BP) often accompanied by extra Ph chromosome, +8, +19, or i(17q)(q10)
 - **Polycythemia Vera (PV)**
 - JAK2 V617F (~95% of cases)
 - JAK2 exon 12 mutation (~5% of cases)
 - **Essential Thrombocytopenia (ET) and Primary Myelofibrosis (PMF)**
 - JAK2 V617F (~50% of cases)
 - CALR exon 9 indel mutations (~30% of cases)
 - MPL W515L (~5% of cases)
 - **Chronic Neutrophilic Leukemia (CNL)**
 - Activating membrane proximal mutations in CSF3R at exon 14, especially T618I and T615A; present in 50-80% of CNL

Cytogenetics

- **Very Good Prognosis**
 - del(11q)* or -Y
- **Good Prognosis**
 - Normal
 - del(5q)*, del(12p)*, del(20q), double del(5q)
- **Intermediate Prognosis**
 - del(7q)
 - Monosomy 5*
 - Trisomy 8, trisomy 19
 - i(17)(q10)*
 - Monosomy 13* or del(13q)*
 - 2+ independent clones
 - Double any other abnormality
- **Poor Prognosis**
 - Monosomy 7*
 - inv(3), t(3;3), del(3q), 3+ abnormalities
 - Very Poor Prognosis
 - Complex (≥3 abnormalities)*

*MDS defining abnormality

*“Molecular in My Pocket” reference cards are educational resources created by the Association of Molecular Pathology (AMP) for laboratory and other health care professionals. The content does not constitute medical or legal advice and is not intended for use in the diagnosis or treatment of individual conditions. See www.amp.org for the full “Limitations of Liability” statement.

Revised 3/2023
Myeloid/Lymphoid Neoplasms associated with Eosinophilia

- **Atypical Chronic Myeloid Leukemia (aCML)**
- **Chronic Myelomonocytic Leukemia (CMML) (MDS/MPN “bridging” category)**

Myeloid/Lymphoid Neoplasms associated with Eosinophilia

- **PDGFRα rearrangement** (often del(4)(q12;q12); FIP1L1:PDGFRα)
- **PDGFRβ rearrangement** (often t(5;12)(q31–33;p12); ETF6:PDGFRβ)
- **FGFR1 rearrangement** (various partners)
- **t(8;9)(p22;p24.1);PCM1::JAK2**
- **ETV6::FLT3 fusion**

Other Entities

- **BCL::ABL1 like B-ALL**
 - Lacks BCR::ABL1 translocation
 - TIS51B and EFR rearrangement
 - KIT mutations
 - CDKN2A/B or IKZF1 deletion/mutation
- **Other translocations involving tyrosine kinases**

T-cell Neoplasms

- **B-cell Neoplasms**

B-lymphoproliferative disorders

Chronic Myelomonocytic Leukemia (CMML) (MDS/MPN “bridging” category)
- Frequent mutations: TET2 (~50%), SRSF2 (~30-50%), ASXL1 (40-50%, poor prognosis if missense mutations are excluded), KRAS and NRAS (myeloproliferative phenotype), SETBP1 (poor prognosis), JAK2 (not specific)

Atypical Chronic Myeloid Leukemia (aCML)
- Overlap MDS/MPN neoplasm
- **BCR::ABL1 negative**
- **Cyto genetics**: +8, i(17q), -7, del(7q), del(20q), +9, del(13q)
- **Molecular genetics**: SETBP1 mutation (~20-30%, exon 4 mutations with DI68N most common, associated with -7 and i(17q), ASXL1 (65%), SRSF2, TET2 (~40%), KRAS, NRAS, EZH2, ETNK1, CBL, JAK2 (~10-30%), SF3B1 (~1%, T618I most common), CALR (rarely or never present)

Myeloid/Lymphoid Neoplasms associated with Eosinophilia
- **PDGFRα rearrangement** (often del(4)(q12;q12); FIP1L1:PDGFRα)
- **PDGFRβ rearrangement** (often t(5;12)(q31–33;p12); ETF6:PDGFRβ)
- **FGFR1 rearrangement** (various partners)
- **t(8;9)(p22;p24.1);PCM1::JAK2**
- **ETV6::FLT3 fusion**

T-Lymphoblastic Leukemia/Lymphoma (T-ALL)
- **Translocations involving T-cell receptor (TCR); error during TCR gene rearrangements**
- **NUP214-ABL1 strictly associated with T-ALL <6% cases**
- **MYC rearrangements (~6% cases)**
- **NOTCH1 (70% cases); CASK2A/B (cryptic deletions >70%) mutations**
- Early T-precursor Acute Lymphoblastic Leukemia (ETP ALL)
- **FLT3, NRAS/KRAS, DNMT3A, IDH1/2**
- **Anaplastic Large Cell Lymphoma, ALK-negative (ALCL, ALK-)**
 - Subset have rearrangement at 6p25 (region with DUSP22 and IRF6 - good prognosis)
 - TP53 rearrangement - poor prognosis
- **Anaplastic Large Cell Lymphoma, ALK-positive (ALCL, ALK+)**
 - Chromosome translocations involving ALK gene at 2p23
 - t(2;5)(p22;q35); ALK-NPM1
 - Other ALK rearrangements

Lymphosarcomatoid Lymphoma/Lymphoma (T-ALL)
- **Translocations involving T-cell receptor (TCR); error during TCR gene rearrangements**
- **NUP214-ABL1 strictly associated with T-ALL <6% cases**
- **MYC rearrangements (~6% cases)**
- **NOTCH1 (70% cases); CASK2A/B (cryptic deletions >70%) mutations**
- Early T-precursor Acute Lymphoblastic Leukemia (ETP ALL)
- **FLT3, NRAS/KRAS, DNMT3A, IDH1/2**
- **Anaplastic Large Cell Lymphoma, ALK-negative (ALCL, ALK-)**
 - Subset have rearrangement at 6p25 (region with DUSP22 and IRF6 - good prognosis)
 - TP53 rearrangement - poor prognosis
- **Anaplastic Large Cell Lymphoma, ALK-positive (ALCL, ALK+)**
 - Chromosome translocations involving ALK gene at 2p23
 - t(2;5)(p22;q35); ALK-NPM1
 - Other ALK rearrangements

Lymphoplasmycytoid Lymphoma (LPL) and IgM Monoclonal Gammopathy of Unknown Significance (MGUS)
- **6q23 deletion most common cytogenetic finding in LPL**
- **MYD88 p.L265P (~90% of cases)**
- **CXCR4 mutation (~30% of LPL, ~20% of IgM MGUS)**
- **ALK-positive large B-cell lymphoma**
 - t(2;17)(p23;q22); TCL1A
- **High-grade B-cell lymphoma**
 - **MYC rearrangement**
 - **BCL2 rearrangement and/or BCL6 rearrangement**
- **Diffuse large B-cell lymphoma, NOS**
 - **Activated B cell type**
 - **BCL2 rearrangements/NOTCH2 mutations**
 - **MYD88 & CD79B mutations**
 - **NOTCH1 mutations**
 - **Germinal center B cell type**
 - **IGH;BCL2 & EZH2 mutations**

Mantle Cell Lymphoma (MCL)
- **t(11;14)(q13;q32); IGH/MYC**
- **Common secondary abnormalities: loss of 1p, 13q, 17p**
- **Two translocations are more common in grade 3B tumors**
- **Mantle Cell Lymphoma (MCL)**
 - **t(11;14)(q13;q32); IGH/MYC**
 - **Common secondary abnormalities: loss of 1p, 13q, 17p**
 - **Two translocations are more common in grade 3B tumors**

Burkitt Lymphoma (BL)
- **MYC rearrangements**
 - **t(8;14)(q24;q32); IGH/MYC**
 - **t(2;8)(p21;q24); IGH/MYC**
 - **t(8;22)(q24;q11); IGL/MYC**

Lymphoplasmacytoid Lymphoma (LPL)
- **IgM MGUS**
- **IgM monoclonal gammopathy of unknown significance (MGUS)**
- **6q23 deletion most common cytogenetic finding in LPL**
- **MYD88 p.L265P (~90% of cases)**
- **CXCR4 mutation (~30% of LPL, ~20% of IgM MGUS)**
- **ALK-positive large B-cell lymphoma**
 - t(2;17)(p23;q22); TCL1A
- **High-grade B-cell lymphoma**
 - **MYC rearrangement**
 - **BCL2 rearrangement and/or BCL6 rearrangement**
- **Diffuse large B-cell lymphoma, NOS**
 - **Activated B cell type**
 - **BCL2 rearrangements/NOTCH2 mutations**
 - **MYD88 & CD79B mutations**
 - **NOTCH1 mutations**
 - **Germinal center B cell type**
 - **IGH;BCL2 & EZH2 mutations**