Hematopathology

Prepared by the Association for Molecular Pathology
Training and Education Committee
For More Educational Resources:
www.amp.org/AMPEducation

Molecular in My Pocket…

Acute Myeloid Leukemia (AML)

Good Prognosis
- Core Binding Factor (CBF) AML
 - t(8;21)(q22;q22); RUNX1::RUNX1T1
 - Blasts with salmon/pink granules
- Predominant in younger patients
- >70% of patients show additional chromosome abnormalities including sex chr loss, del(9q)
- inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBF8::MYH11
- Abnormal eosinophils
- Worse prognosis in CBF AMLs when KIT is mutated
- Acute Promyelocytic Leukemia (APL) with
 - t(15;17)(q22;q11.2); PML::RARA
- Blilobed blasts with granules +/- Auer rods
- Associated with disseminated intravascular coagulation
- Sensitivity of APL cells to ATRA/arsenic treatment
 - APL variants like ZBTB16::RARA and STAT5B::RARA fusions are resistant to ATRA
- NPM1 mutation without FLT3-ITD
- AML with in-frame bZIP mutated CEBPA
- FLT3-ITD mutations occur in 22-33% of cases (unclear prognosis)

Intermediate Prognosis
- t(9;11)(p22;q23); MLLT3::KMT2A
- Blasts with monocytic differentiation and fine azurophilic granules
- Associated with gingival myeloid sarcoma
- Normal Karyotype, mutation status unknown (or rarely negative)

Poor Prognosis
- t(6;9)(p23;q34); DE
- Acute Myeloid Leukemia (AML)
- Intermediate Prognosis
 - t(9;11)(p22;q23); MLLT3::KMT2A
- Blasts with monocytic differentiation and fine azurophilic granules
- Associated with gingival myeloid sarcoma
- More common in children (10% pediatric AML)
- Normal Karyotype, mutation status unknown (or rarely negative)

Hematopathology

Myelodysplastic Syndromes (MDS)

<table>
<thead>
<tr>
<th>Cytogenetics</th>
<th>Good Prognosis</th>
<th>Intermediate Prognosis</th>
<th>Poor Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del(5q), del(12p), del(20q), double del(5q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>del(7q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monosomy 5*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trisomy 8, trisomy 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i(17)(q10)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monosomy 13* or del(13q)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+ independent clones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double any other abnormality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor Prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monosomy 7*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inv(3), t(3;3), del(3q), 3+ abnormalities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Poor Prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex (≥3 abnormalities)*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MDS defining abnormality

Mutations

<table>
<thead>
<tr>
<th>Good Prognosis</th>
<th>Intermediate Prognosis</th>
<th>Poor Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF3B1 mutation (strongly correlated with ring sideroblasts)</td>
<td>t(9;11)(p22;q23); MLLT3::KMT2A</td>
<td>t(6;9)(p23;q34); DE</td>
</tr>
<tr>
<td>With SF3B1 mutation can diagnose MDS with ring sideroblasts (MDS-RS) with only 5% ring sideroblasts rather than 15% without the mutation</td>
<td>Blasts with monocytic differentiation and fine azurophilic granules</td>
<td>With or without monocytic features, often associated with basophilia and multilineage dysplasia</td>
</tr>
<tr>
<td>Poor Prognosis</td>
<td>Poor Prognosis</td>
<td>Poor Prognosis</td>
</tr>
<tr>
<td>TP53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other mutations may impart worse prognosis: ASXL1, SRSF2, STAG2, EZH2, U2AF1, RUNX1, NRAS</td>
<td>Other mutations may impart worse prognosis: ASXL1, SRSF2, STAG2, EZH2, U2AF1, RUNX1, NRAS</td>
<td>Other mutations may impart worse prognosis: ASXL1, SRSF2, STAG2, EZH2, U2AF1, RUNX1, NRAS</td>
</tr>
</tbody>
</table>

Chronic Myelogenous Leukemia (CML)
- t(9;22)(q34;q11.2); BCR:ABL1
 - Usually M-BCR (p210) breakpoint
 - Rarely m-BCR (p190) or μ-BCR (p230) breakpoints
 - ABL1 kinase mutations confer TKI resistance
 - Particularly T315I
 - Transformation to accelerated phase (AP) or blast phase (BP) often accompanied by extra Ph chromosome, +8, +19, or i(17)(q10)

Polycthemia Vera (PV)
- JAK2 V617F (~95% of cases)
- JAK2 exon 12 mutation (~5% of cases)

Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF)
- JAK2 V617F (~50% of cases)
- CALR exon 9 indel mutations (~30% of cases)
- MPL WS15K/L (~3% of cases)

Chronic Neutrophilic Leukemia (CNL)
- Activating membrane proximal mutations in CSF3R at exon 14, especially T618I and T615A; present in 50-80% of CNL

Molecular Pathology

Myeloproliferative Neoplasms (MPN) and Mastocytosis

<table>
<thead>
<tr>
<th>Chronic Neutrophilic Leukemia (CNL)</th>
<th>Essential Thrombocytopenia (ET) and Primary Myelofibrosis (PMF)</th>
<th>Chronic Neutrophilic Leukemia (CNL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activating membrane proximal mutations in CSF3R at exon 14, especially T618I and T615A; present in 50-80% of CNL</td>
<td>JAK2 V617F (~50% of cases)</td>
<td>Activating membrane proximal mutations in CSF3R at exon 14, especially T618I and T615A; present in 50-80% of CNL</td>
</tr>
</tbody>
</table>

Mastocytosis
- KIT D816V (~95% of cases)
- TET2 mutations in ~25% of mastocytosis – correlate with more aggressive behavior
- Additional mutations: SRSF2 (30-40%), ASXL1 (24%), IDH2 (7%)

“Molecular in My Pocket” reference cards are educational resources created by the Association of Molecular Pathology (AMP) for laboratory and other health care professionals. The content does not constitute medical or legal advice, and is not intended for use in the diagnosis or treatment of individual conditions. See www.amp.org for the full “Limitations of Liability” statement.

Revised 9/2022
Other Entities

<table>
<thead>
<tr>
<th>Chronic Myelomonocytic Leukemia (CMML) (MDS/MPN "bridging" category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent mutations: TET2 (~50%), SRSF2 (~30-50%), ASXL1 (40-50%, poor prognosis if nonsense mutations are excluded), KRAS and NRAS (myeloproliferative phenotype), SETBP1 (poor prognosis), JAK2 (not specific)</td>
</tr>
</tbody>
</table>

Abtypical Chronic Myeloid Leukemia (aCML)

- Overlap MDS/MPN neoplasm
- BCR/ABL1 negative
- Cyto genetics: 8q, 11q(7), 7, del(7q), del(20q), +9, del(13q)
- Molecular genetics: SETBP1 mutation (~30-40%), +9, exon 4 mutations with D816N most common, associated with 7 and 11q(7), ASXL1 (65%), SRSF2, TET2 (~40%), KRAS, NRAS, EZH2, ETNK1, CBL, JAK2, ~10-30% , CSF3R (~1%, T618I most common), CALR (rarely or never present)

Juvenile Myelomonocytic Leukemia (JMML)

- Somatic PTEN (10-30%), KRAS and NRAS (75-80%) mutations
- Clinical NFI disease or NFI1 mutation
- Germline CBL mutation (10-15%), Y371 common mutation hotspot

Myeloid/Lymphoid Neoplasms associated with Eosinophilia

- PDGFRα rearrangement (often del(4)(q12;12); FIP1L1-PDGFRα)
- PDGFRβ rearrangement (often t(5;12)(q13–p12); ET6V-PDGFRβ)
- FGRF1 rearrangement (various partners)
- t(8;9)(p22;p24.1); PCM1-JAK2
- ETv6;FLT3 fusion

Myeloid Neoplasms with Germline Predisposition

- AML with germline CEBPA mutation
- Myeloid neoplasm with germline DDXX1 mutation

Myeloid Neoplasms

- Associated with platelet disorders
- RUNX1, ANKRD26, ET6V mutation
- Associated with other organ dysfunction
- GATA2 mutation
- JAK/MPG-type mutations
- TET2, NRAS, KRAS, DNMT3A, IDH1/2

Langerhans cell histiocytosis, histiocytic sarcoma, Erdheim-Chester disease

- BRAF p.V600E mutation in a subset of cases
- TET3, NRAS, KRAS, DNMT3A, IDH1/2

Peripheral T cell lymphoma, NOS (PTCL-NOS)

- MYC rearrangements (~6% cases)
- Subset have rearrangement at 6p25 (region with ATM, STAT5B, mutation (~70% cases), CDKN2A/B (most common, associated with -7 and i(17q), RUNX1 mutation (~75-80%), JAK2, NYFIP11 mutation (20-30%), exon 4 mutations with D816N, most common, associated with 7 and 11q(7), ASXL1 (65%), SRSF2, TET2 (~40%), KRAS, NRAS, EZH2, ETNK1, CBL, JAK2, ~10-30% , CSF3R (~1%, T618I most common), CALR (rarely or never present)

T-cell Neoplasms

<table>
<thead>
<tr>
<th>Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Prognosis</td>
</tr>
<tr>
<td>Procedure (extra chromosomes are not random: X, 4, 14, 21 most common)</td>
</tr>
<tr>
<td>t(12;12)(p13q22);ET6V;RUNX1 (typically cryptic fusion)</td>
</tr>
<tr>
<td>Common in children, ~25% of B-ALL</td>
</tr>
<tr>
<td>Intermediate translocation t(5;14)(q31;q12);IGH/L3, associated with eosinophilia</td>
</tr>
<tr>
<td>Poor Prognosis</td>
</tr>
<tr>
<td>t(9;22)(q34;q11.2); BCR::ABL1</td>
</tr>
<tr>
<td>Usually m-BCR (Most pediatric cases have p190; in adults, 50% is p190 and 50% is p210)</td>
</tr>
<tr>
<td>t(1;19)(q23;32); KMT2A rearranged</td>
</tr>
<tr>
<td>Most common leukemia in infants <1 year old; may occur in utero</td>
</tr>
<tr>
<td>Common translocation partners AFF1 (4q21) and MLT1 (19p13)</td>
</tr>
<tr>
<td>Hypodiploid</td>
</tr>
<tr>
<td>Most commonly lost chromosomes include 3, 4, 7, 9, 13, 17, and 20</td>
</tr>
<tr>
<td>Worse prognosis: near haploid (25-29 chromosomes) and low hypodiploid (33-39 chromosomes)</td>
</tr>
<tr>
<td>Intrachromosomal amplification of chromosome 21 (iAMP21)</td>
</tr>
<tr>
<td>Defined by multiple copies of RUNX1, not detectable by standard karyotyping</td>
</tr>
<tr>
<td>BCR::ABL1 like B-ALL</td>
</tr>
<tr>
<td>Lacks BCR::ABL1 translocation</td>
</tr>
<tr>
<td>15-20% pediatric ALL</td>
</tr>
<tr>
<td>CRLF2 or EPOR rearrangement</td>
</tr>
<tr>
<td>JAK mutations</td>
</tr>
<tr>
<td>CDKN2A/B or ILK2 deletion/mutation</td>
</tr>
<tr>
<td>Other translocations involving tyrosine kinases</td>
</tr>
</tbody>
</table>

B-cell Neoplasms

<table>
<thead>
<tr>
<th>B-Cell Lymphoma (B-ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good prognosis</td>
</tr>
<tr>
<td>Hyperdiploid (extra chromosomes are not random: X, 4, 14, 21 most common)</td>
</tr>
<tr>
<td>t(12;12)(p13q22);ET6V;RUNX1 (typically cryptic fusion)</td>
</tr>
<tr>
<td>Common in children, ~25% of B-ALL</td>
</tr>
</tbody>
</table>

T-cell Large Granular Lymphocyte Leukemia (T-LGL)

- STAT3 mutation
- STAT5B mutation

Peripheral T cell lymphoma, NOS (PTCL-NOS)

- TET2, DNMT3A, VAV1
- GATA3 vs TXB2 profiles
- Complex cyto genetic abnormalities common; t5;9(33;q22) JTK5YK in follicular variant
- Clonal rearrangements of TRB and TRG, IGH rearrangements in ~30% cases

T-cell Prolymphocytic lymphoma (T-PLL; with inv(14) or t(14;14)(ATM,STAT5B, JAK1, JAK3)

- Complex karyotypes common with numerical and structural abnormalities including inv(14), t(14;14), i(8)(q10), -11, del11q, -22, -13, TCL1A (TCL1) rearrangements at 14q32. Multiple submicroscopic abnormalities.

Follicular Lymphoma (FL)

- t(14;18)(q32;q21) (80-90% cases); IGH/BCL2
- Cases without t(14;18) are usually BCL2 negative with increased CHECK1 expression
- FL cases have ~6 cytogenetic abnormalities (17p and 6q23 worst prognosis)
- Complex karyotype correlates with poorer prognosis
- BCL6 rearrangements more common in grade 3B tumors

Burkitt Lymphoma (BL)

- t(8;14)(q24;q32) occurs rarely and has worse prognosis; t(8;14) and CCND1 rearrangement is called a “double hit” MCL

Extranodal Marginal Zone Lymphoma, MALT type

- t(8;14)(q24;q32); IGH/ MYC
- Poor Prognosis
- t(1;14)(q23;p22) (a/w SF3B1)

Hairy Cell Leukemia (HCL)

- B RAF p.V600E (~95% of cases)
- >85% HCL cases demonstrate somatic hypermutation in VH genes
- MAP2K7 mutations = Hairy Cell Leukemia variant (HCL-v)

Lymphoplasmacytic Lymphoma/Lymphoma (T-ALL)

- Translocations involving T-cell receptor (TCR)
- error during TCR gene rearrangements
- NUP214-ABL1 strictly associated with T-ALL <6% cases
- MYC rearrangements (~6% cases)
- NOTCH1 (70% cases), CDKN2A/B (cryptic deletions >70% cases) mutations

Anaplastic Large Cell Lymphoma, ALK-negative (ALCL, ALK-)

- Subset have rearrangement at 6p25 (region with DUSP22 and IGF1 - good prognosis)
- TP63 rearrangement - poor prognosis

Anaplastic Large Cell Lymphoma, ALK-positive (ALCL, ALK+)

- Chromosome translocations involving ALK gene at 2p23
- t(2;5)(p22;q35); ALK-PMN1
- Other ALK rearrangements

Lymphoplasmodysplastic Lymphoma (LPL) and IgM Monoclonal Gammopathy of Unknown Significance (MGUS)

- 6q23 deletion most common cytogenetic finding in LPL
- MYD88 p.L265P (~90% of cases)
- CXCR4 mutation (~30% of LPL, ~20% of IgM MGUS)
- ALK-positive large B-cell lymphoma
- t(2;17)(p23;q23); CLTC::ALK
- High-grade B-cell lymphoma
- MYC rearrangement with BCL2 and/or BCL6 rearrangement

Hypodiploid

- Defined by multiple copies of RUNX1, not detectable by standard karyotyping
- BCR::ABL1 like B-ALL
- Lacks BCR::ABL1 translocation
- 15-20% pediatric ALL
- CRLF2 or EPOR rearrangement
- JAK mutations
- CDKN2A/B or IKZF1 deletion/mutation
- Other translocations involving tyrosine kinases

Hairy Cell Leukemia

- B RAF p.V600E (~95% of cases)
- >85% HCL cases demonstrate somatic hypermutation in VH genes
- MAP2K7 mutations = Hairy Cell Leukemia variant (HCL-v)