Hematopathology

Prepared by the Association for Molecular Pathology Training and Education Committee

For More Educational Resources: www.amp.org/AMPEducation

Molecular in My Pocket…

Acute Myeloid Leukemia (AML)

<table>
<thead>
<tr>
<th>Good Prognosis</th>
<th>Intermediate Prognosis</th>
<th>Poor Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Binding Factor (CBF) AML</td>
<td>Blasts with monocytic differentiation and fine azurophilic granules</td>
<td>With or without monocytic features, often associated with basophilia and multilineage dysplasia</td>
</tr>
<tr>
<td>t(8;21)(q22;q22); RUNX1-RUNX1T1</td>
<td>Associated with gingival myeloid sarcoma</td>
<td>inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2, MECOM</td>
</tr>
<tr>
<td>-</td>
<td>More common in children (10% pediatric AML)</td>
<td>Abnormal megakaryocytes</td>
</tr>
<tr>
<td>-</td>
<td>Normal Karyotype, mutation status unknown (or rarely negative)</td>
<td>Multilineage dysplasia</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Common secondary karyotypic abnormalities include -7 (50% cases), del(5q) and complex karyotypes</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>AML with myelodysplasia related changes (AML-MRC)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>≥50% dysplasia in ≥2 lineages (if no NPM1 mutation)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>History of MDS</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>MDS-defining cytogenetic abnormality (see MDS section)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>11q23 (non t(9;11), many partners)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>t(9;22) (q34;q11.2) bcr-abl1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>FLT3-ITD mutation</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>~20% AML cases</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>ASXL1, TP53, RUNX1 mutation</td>
</tr>
</tbody>
</table>

Myelodysplastic Syndromes (MDS)

<table>
<thead>
<tr>
<th>Cytogenetics</th>
<th>Mutations</th>
<th>Other Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good Prognosis</td>
<td>Good Prognosis</td>
<td>Poor Prognosis</td>
</tr>
<tr>
<td>- del(11q)* or -Y</td>
<td>SF3B1 mutation (strongly correlated with ring sideroblasts)</td>
<td>TPS3</td>
</tr>
<tr>
<td>Good Prognosis</td>
<td>With SF3B1 mutation can diagnose MDS with ring sideroblasts (MDS-RS) with only 5% ring sideroblasts rather than 15% without the mutation</td>
<td></td>
</tr>
<tr>
<td>- del(5q), del(12p), del(20q), double del(5q)</td>
<td>Poor Prognosis</td>
<td></td>
</tr>
<tr>
<td>Intermediate Prognosis</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- del(7q)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Monosomy 5*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Trisomy 8, trisomy 19</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- i(17)(q10)*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Monosomy 13* or del(13q)*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 2+ independent clones</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Double any other abnormality</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Poor Prognosis</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Monosomy 7*</td>
<td>Other mutations may impart worse prognosis: ASXL1, SRSF2, STAG2, EZH2, U2AF1, RUNX1, NRRAS</td>
<td></td>
</tr>
<tr>
<td>Very Poor Prognosis</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Complex (≥3 abnormalities)*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MDS-defining abnormality</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MDS-associated mutations may also occur in clonal hematopoiesis of indeterminate potential— particularly DNMT3a, TET2, ASXL1. Mutational findings alone are not diagnostic of MDS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Myelogenous Leukemia (CML)</td>
<td></td>
<td>Chronic Neutrophilic Leukemia (CNL)</td>
</tr>
<tr>
<td>t(9;22)(q34;q11.2)BCR-ABL1</td>
<td>-</td>
<td>Activating membrane proximal mutations in CSF3R at exon 14, especially T618I and T615A; present in 50-80% of CNL</td>
</tr>
<tr>
<td>- Usually M-BCR (p210) breakpoint</td>
<td>-</td>
<td>Mastocytosis</td>
</tr>
<tr>
<td>Rarely m-BCR (p190) or ι-BCR (p230) breakpoints</td>
<td>ABL1 kinase mutations confer TKI resistance</td>
<td></td>
</tr>
<tr>
<td>ABL1 kinase mutations confer TKI resistance</td>
<td>Particularly T315I</td>
<td></td>
</tr>
<tr>
<td>Particularly T315I</td>
<td>Transformation to accelerated phase (AP) or blast phase (BP) often accompanied by extra Ph chromosome, +8, +19, or i(17)(q10)</td>
<td></td>
</tr>
<tr>
<td>Transformation to accelerated phase (AP) or blast phase (BP) often accompanied by extra Ph chromosome, +8, +19, or i(17)(q10)</td>
<td>Polycythemia Vera (PV)</td>
<td></td>
</tr>
<tr>
<td>Polycythemia Vera (PV)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- JAK2 V617F (~95% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- JAK2 exon 12 mutation (~5% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF)</td>
<td>Chronic Thrombocytopenia (ET) and Primary Myelofibrosis (PMF)</td>
<td></td>
</tr>
<tr>
<td>JAK2 V617F (~50% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CALR exon 9 indel mutations (~30% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MPL W515K/L (~5% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Myeloproliferative Neoplasms (MPN) and Mastocytosis</td>
<td>Myelofibrosis (PMF)</td>
<td>Mastocytosis</td>
</tr>
<tr>
<td>Myelofibrosis (PMF)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Activating membrane proximal mutations in CSF3R at exon 14, especially T618I and T615A; present in 50-80% of CNL</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chronic Thrombocytopenia (ET) and Primary Myelofibrosis (PMF)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>JAK2 V617F (~50% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CALR exon 9 indel mutations (~30% of cases)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MPL W515K/L (~5% of cases)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*Molecular in My Pocket” reference cards are educational resources created by the Association of Molecular Pathology (AMP) for laboratory and other health care professionals. The content does not constitute medical or legal advice, and is not intended for use in the diagnosis or treatment of individual conditions. See www.amp.org for the full "Limitations of Liability" statement."
B-cell Neoplasms

B Lymphoblastic Leukemia (B-ALL)
- **Good prognosis**
 - Hyperdiploid (extra chromosome copies are not random: X, 4, 14, 21 most common)
 - Intermediate prognosis - t(5;14)(q31;q32); IGHL/JJI, associated with eosinophilia
 - Poor Prognosis
 - t(9;22)(q34;q11.2); BCR-ABL1
 - Usually m-BCR (Most pediatric cases have p190; in adults, 50% is p190 and 50% is p210)
 - (t;11q23); M2TA2 rearranged
 - Most common leukemia in infants <1 year old; may occur in utero
 - Common translocation partners AF11 (q421) and MLT1 (19p13)
 - Hydroploid
 - Most commonly lost chromosomes include 3, 4, 7, 9, 13, 17, and 20
 - Worse prognosis: near haploid (25-29 chromosomes) and low hypoploid (33-39 chromosomes)
 - Intrachromosomal amplification of chromosome 21 (iAMP21)
 - Defined by multiple copies of RUNXI, not detectable by standard karyotyping
 - BCR-ABL1 like B-ALL
 - Lacks BCR-ABL1 translocation
 - IS-20 pediatric ALL
 - CRLF2 or EPOR rearrangement
 - JAK mutations
 - CDKN2A/B or IKZF1 deletion/mutation
 - Other translocations involving tyrosine kinases

T-cell Neoplasms

T Lymphoblastic Leukemia/Lymphoma (T-ALL)
- Translocations involving T-cell receptor (TCR) error during TCR gene rearrangements
- NUP214-ABL1 strictly associated with T-ALL <6% cases
- MYC rearrangements (~6% cases)
- NOTCH1 (70% cases), CDKN2A/B (cryptic deletions >70% cases)

T-cell Large Granular Lymphocyte Leukemia (T-LGL)
- STAT3 mutation
- STAT5B mutation

Peripheral T cell lymphoma, NOS (PTCL-NOS)
- TET2, DNMT3A, VAV1
- GATA3 vs. TBX21 profiles

Complex cytogenetic abnormalities common:
- t(5;9)(q33;q32)/TIR-SYK in follicular variant

Clonal rearrangements of TRB and TRG, IGH rearrangements in ~30% cases

Angioimmunoblastic T-cell lymphoma (AITL)
- RHOD, CD26, TET2, DNMT3A, IDH2

T-cell Prolymphocytic lymphoma (T-PDLL; with inv(14) or t(14;14))
- STAT5B, JAK1, JAK3

Complex karyotypes common with numerical and structural abnormalities including inv(14), t(14;14), i(8)(q10), -11, del11q, -22, -13.

TCL1A (TCL1) rearrangements at 14q32.

Multiple submicroscopic abnormalities.

Myeloid/Lymphoid Neoplasms associated with Eosinophilia
- **PDGFRα rearrangement** (often del(11)(q22); FGFR1-PDGFRα)
- **PDGFRβ rearrangement** (often t(5;12)(q31–33;p12);ETV6-PDGFRB)
- **FGFR1 rearrangement** (various partners)
- **t(8;9)(p22;p24.1); PCM1-JAK2**
- **ETV6-FLT3 fusion**

Myeloid Neoplasms with Germline Predisposition
- **AML with germline CEBSA mutation**
- **Myeloid neoplasm with germline DDX41 mutation**
- Associated with platelet disorders
 - RUNX1, ANKRD26, ET6V mutation
 - Associated with other organ dysfunction
 - GATA2 mutation
 - JMML-type mutations

Juvenile Myelomonocytic Leukemia (JMML)
- **Somatic PTPN11 (20-30%); KRAS, NRAS, EZH2, ETNK1, CBL, JAK2; (~10-30%)**, SF3B1 (~1%, T618I most common), CALR (rarely or never present)

Atypical Chronic Myeloid Leukemia (aCML)
- Overlap MDS/MPN neoplasm
- **BCR-ABL1 negative**
- Cytogenetics: 48, i(17q), -7, del(7q), del(20q), +9, del(13q)
- Molecular genetics: SETBP1 mutation (~20-30%), exon 4 mutations with DIS6N most common, associated with -7 and i(17q). ASXL1 (65%), SF3B1, TET2 (~40%). KRAS, NRAS, EZH2, ETNK1, CBL, JAK2, (~10-30%), SF3B1 (~1%, T618I most common), CALR (rarely or never present)

KRAS prognosis if missense mutations are excluded), Poor Prognosis most common, associated with -7 and i(17q), ASXL1 (65%), SF3B1, TET2 (~40%). KRAS, NRAS, EZH2, ETNK1, CBL, JAK2, (~10-30%), SF3B1 (~1%, T618I most common), CALR (rarely or never present)

SetBP1 mutation (~20-30%), exon 4 mutations with DIS6N most common, associated with -7 and i(17q), ASXL1 (65%), SF3B1, TET2 (~40%). KRAS, NRAS, EZH2, ETNK1, CBL, JAK2, (~10-30%), SF3B1 (~1%, T618I most common), CALR (rarely or never present)

Early T-precursor Acute Lymphoblastic Leukemia (ETP ALL)
- **FLT3, NRAS/KRAS, DNMT3A, IDH1/2**

Anaplastic Large Cell Lymphoma, ALK-negative (ALCL, ALK-)
- ** Subset have rearrangement at 6p25 (region with DUSP22 and IRF6) - good prognosis**
- TP53 rearrangement - poor prognosis

Anaplastic Large Cell Lymphoma, ALK-positive (ALCL, ALK+)
- ** Chromosome translocations involving ALK gene at 2p23**
 - t(2;5)(p23;q35); ALK-STAT5A
 - Other ALK rearrangements

Other Entities

Chronic Myelomonocytic Leukemia (CMML) (MDS/MPN "bridging" category)
- Frequent mutations: TET2 (~50%), SRSF2 (~30-50%), ASXL1 (~90-50%), poor prognosis if missense mutations are excluded, KRAS and NRAS (myeloproliferative phenotype), SETBP1 (poor prognosis), JAK2 (not specific)

Myeloid/Lymphoid Neoplasms with Germline Predisposition
- **AML with germline CEBSA mutation**
- **Myeloid neoplasm with germline DDX41 mutation**
 - Associated with platelet disorders
 - RUNX1, ANKRD26, ET6V mutation
 - Associated with other organ dysfunction
 - GATA2 mutation
 - JMML-type mutations

Intrachromosomal amplification of chromosome 21 (iAMP21)
- **Most common leukemia in infants <1 year old; may occur in utero**
- **Common secondary abnormalities: loss of 1p, 13q, 17p, gains**
- **Worse prognosis: near haploid (25-29 chromosomes) and low hypoploid (33-39 chromosomes)**
- **BCL6 rearrangements more common in grade 3B tumors**

Mantle Cell Lymphoma (MCL)
- **t(11;14)(q13;q32); IGH/CCND1**
 - Common secondary abnormalities: loss of 1p, 13q, 17p, gains in 3q. Numerical abnormalities include +3, +12, -8, -9, -Y, -Y
 - (t;8;14)(q24;q32) occurs rarely and has worse prognosis; (t;8;14) and CCND1 rearrangement is called a “double hit” MCL

Burkitt Lymphoma (BL)
- **MYC rearrangements**
 - t(8;14)(q24;q32); IGH/MYC
 - t(2;8)(p12;q24); IKG/MYC
 - t(8;22)(q11;11); IGL/MYC

hairy cell leukemia (HCL)
- **BRF; pV600E (~95% of cases)**
 - >85% HCL cases demonstrate somatic hypermutation in VH genes
 - **MAP2K1 mutations = hairy cell leukemia variant (HCL-v)**

Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)
- **Good Prognosis**
 - del(13q) (14%) most common cytogenetic abnormality
 - **Mutated IGHV**
 - **Intermediate Prognosis**
 - Trisomy 12 (a/w ALK-)
 - **Poor Prognosis**
 - del(13q)
 - del(11)(q22-23) (a/w SF3B1)

Extranodal Marginal Zone Lymphoma, MALT type
- **t(11;18)(q21;q21) – pulmonary and gastric MALT**
 - t(14;18)(q32;q21) – orbital and salivary gland MALT
 - t(13;14)(q14;q32) - thyroid, orbital, skin MALT
 - t(1;14)(p23;q22)

Diffuse large B-cell lymphoma, NOs
- **Activated B cell type**
 - BCL6 rearrangements/NOTCH2 mutations
 - MYD88, CD79B mutations
 - NOTCH1 mutations
 - Germinal center B cell type
 - IGH/BCL2 and EZH2 mutations

Lymphoplasmacytic Lymphoma (LPL) and IgM monoclonal gammopathy of unknown significance (MUGS)
- 6q23 deletion most common cytogenetic finding in LPL
 - MYD88 p.L265P (~90% of cases)
 - CXCR4 mutation (~30% of LPL, ~20% of IgM MUGS)
 - ALK-positive large B-cell lymphoma
 - t(1;14)(p23;q23); CLTC-ALK
 - High-grade B-cell lymphoma
 - MYC rearrangement with BCL2 and/or BCL6 rearrangement