ONCOLOGY: Acute Myeloid Leukemia

Work-up

- Suspected acute leukemia

Morphology

- Flow cytometry

Cytogenetics

- Molecular genetic analysis

Acute Myeloid Leukemia with Defining Genetic Abnormalities

- **Acute promyelocytic leukemia with PML::RARA fusion**
 - Good prognosis
 - t(15;17)(q22;q11.2)
 - Blasts with granules +/− Auer rods (often multiple)
 - Other variants - Cells with regular nuclei, many granules, absence of Auer rods, pelgeroid neutrophils, strong MPO
 - NUMA1::RARA; t(11;17)(q13.4;q21.2)
 - NPM1::RARA; t(5;17)(q35.1;q21.2)
 - STAT5B::RARA; t(17;17)(q21.2;q21.2)
 - ZBTB16::RARA; t(11;17)(q23.2;q21.2)
 - Associated with disseminated intravascular coagulation
 - Sensitive to ATRA/arsenic trioxide
 - ZBTB16::RARA and STAT5B::RARA are ATRA resistant

- **AML with RUNX1::RUNX1T1 fusion; t(8;21)(q22;q22.1)**
 - Good prognosis
 - Blasts with basophilic cytoplasm, azurophilic granules and perinuclear hofs; may show pseudo-Chédiak-Higashi granules and/or single, long Auer rods with tapered ends
 - Neutrophils may show pseudo-Pelger-Huët nuclei and salmon pink granules
 - Presence of KIT mutation and CD56 expression associated with worse prognosis; ASXL1/2 mutations may also be seen

- **AML with CBFB::MYH11 fusion**
 - Good prognosis
 - inv(16)(p13.1q22) or t(16;16)(p13.1;q22)
 - Blasts with abnormal eosinophils (immature eosinophilic/basophilic granules, dense and purplish in color)
 - Secondary cytogenetic abnormalities include +22 and +8 (each occurring in 10-15% of cases), del(7q) and +21 (in 5%)
 - KIT mutations in exons 8 and 17 (in 30-40%); worse prognosis
 - Other mutations: NRAS (in 45%), KRAS (in 13%), FLT3 (in 14%)

- **AML with KMT2A rearrangement**
 - Intermediate prognosis
 - More than 80 KMT2A fusion partners described, with MLLT3, AFDN, ELL, and MLLT10 being most common
 - Adults often have high blast counts at presentation, usually with monocytic differentiation
 - In children, AML with KMT2A::MLLT3 and KMT2A::MLL10 show megakaryoblastic differentiation and/or low blast counts
 - May present with DIC, myeloid sarcoma, gingival hyperplasia
 - May need FISH/other molecular techniques for identification due to subtle translocations
 - MECOM overexpression is common; worse prognosis

- **AML with DEK::NUP214 fusion**
 - Poor prognosis
 - t(6;9)(p23;q34.1)
 - Blasts with/without monocyctic features
 - Associated with basophilia and multilineage dysplasia
 - FLT3-ITD mutations are common; may benefit from FLT3 inhibitors

- **AML with MECOM rearrangement**
 - Poor prognosis
 - inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)
 - May have normal or elevated platelet counts, hepatosplenomegaly
 - Peripheral blood may include hypogranular neutrophils with pseudo-Chédiak-Higashi granules and/or single, long Auer rods with tapered ends
 - May be associated with mutations of RAS/receptor tyrosine kinase signalling pathways (NRAS, PTPN11, FLT3, KRAS, NF1, KIT)
 - Other associated mutations: GATA2, RUNX1, SF3B1

- **AML with KMT2A::RUNX1 fusion**
 - Good prognosis
 - More than 80 KMT2A fusion partners described, with MLLT3, AFDN, ELL, and MLLT10 being most common
 - Adults often have high blast counts at presentation, usually with monocytic differentiation
 - In children, AML with KMT2A::MLLT3 and KMT2A::MLL10 show megakaryoblastic differentiation and/or low blast counts
 - May present with DIC, myeloid sarcoma, gingival hyperplasia
 - May need FISH/other molecular techniques for identification due to subtle translocations
 - MECOM overexpression is common; worse prognosis

- **AML with DEK::NUP214 fusion**
 - Poor prognosis
 - t(6;9)(p23;q34.1)
 - Blasts with/without monocyctic features
 - Associated with basophilia and multilineage dysplasia
 - FLT3-ITD mutations are common; may benefit from FLT3 inhibitors

- **AML with R8M15::MRTFA fusion**
 - Poor prognosis
 - t(1;12)(p13.3;q13.1)
 - Uncommon; may be congenital
 - Infants and children age <3 years
 - Small and large megakaryoblasts admixed with undifferentiated blasts; dense fibrosis

- **AML with BCR/ABL1 fusion**
 - 20% blasts required
 - De novo AML in patients with no evidence of CML before/after therapy
 - Present with less splenomegaly, less basophilia, lower cellularity, fewer dwarf megakaryocytes, normal M:E ratio compared with blast transformation of CML
 - Most cases show the p210 fusion (most commonly b2a2 and b3a2 fusions); minority show p190 fusion
 - Associated with -7, +8 and complex karyotypes
 - May be associated with NPM1 and KIT mutations
 - Present with less splenomegaly, less basophilia, lower cellularity, fewer dwarf megakaryocytes, normal M:E ratio compared with blast transformation of CML

Mixed phenotype acute leukemia

- Acute myeloid leukemia
- B or T lymphoblastic leukemia/lymphoma

"Molecular in My Pocket” reference cards are educational resources created by the Association of Molecular Pathology (AMP) for laboratory and other health care professionals. The content does not constitute medical or legal advice, and is not intended for use in the diagnosis or treatment of individual conditions. See www.amp.org for the full “Limitations of Liability” statement."
Acute Myeloid Leukemia with Defining Genetic Abnormalities (cont’d)

AML with NPM1 mutation
- Overall prognosis good; poorer prognosis with presence of FLT3-ITD +/- DNMT3A
- Blasts often show monocytic features
- Multilineage dysplasia seen in up to 25% of cases
- Often associated with normal karyotype
- del(9q), +8 seen in 5-15% of cases
- Secondary mutations include FLT3, DNMT3A, IDH1/2, KRAS, NPM1

AML with NUP98 rearrangement
- Rearrangement may be cryptic

AML with mutated TP53
- Very poor prognosis
- Typically associated with complex karyotype
- Although multi-hit TP53 is required for MDS with mutated TP53, in AML and MDS/AML with mutated TP53, any pathogenic TP53 mutation VAF >10% is sufficient.
- Pure erythroid leukemia is typically associated with TP53 mutations, and these cases should be classified as AML with mutated TP53.

Myeloid/Lymphoid Neoplasms with eosinophilia and tyrosine kinase gene fusions

- Broad range of histologic types – MPN, MDS, MDS/MPN, AML, MPAL, B-ALL, T-ALL
- Eosinophilia common feature but may be absent in some cases
- Sensitive to tyrosine kinase inhibitor therapy
- Defining genetic abnormalities
 - **PDGFRα rearrangement** (often del(4)(q12q12); FIP1L1::PDGFRα)
 - **PDGFRα rearrangement** (often t(5;12)(q31.1;q12); EGFR::PDGFRα)
 - **FGFR1 rearrangement**
 - **JAK2 rearrangement** (often t(8;9)(p22;p24.1); PCM1::JAK2)
 - **FLT3 rearrangement**
 - **ETV6::ABL1 fusion**
 - Other defined TK fusions: **ETV6::FGFR2; ETV6::LYN; ETV6::NTRK3; RANBP2::ALK; BCR::RET; FGFR1OP::RET**

Myeloid neoplasms post cytotoxic therapy

- Poor prognosis
- Requires a documented history of chemotherapy (e.g. alkylating agents, topoisomerase II inhibitors, antimetabolites, antituibulin agents) or large-field radiation therapy for an unrelated condition
- De novo AML with defining genetic abnormalities post cytotoxic therapy should be assigned to this category
- Majority associated with TP53 mutations; worse outcomes with biallelic (multi-hit) TP53 alterations
- Less frequent mutations involving genes such as PPM1D or DNA-damage response genes require consideration of a germline predisposition

Myeloid neoplasms associated with germline predisposition

- **Myeloid neoplasm predisposition without a pre-existing platelet disorder or organ dysfunction**
 - Germline **CEBPA** P/LP variant (CEBPA-associated familial AML)
 - Germline **DDX41** P/LP variant
 - Germline **TP53** P/LP variant (Li-Fraumeni syndrome)
- **Myeloid neoplasm predisposition and pre-existing platelet disorder**
 - Germline **RUNX1** P/LP variant (familial platelet disorder with associated myeloid malignancy)
 - Germline **ANKRD26** P/LP variant (Thrombocytopenia 2)
 - Germline **ETV6** P/LP variant (Thrombocytopenia 5)

Myeloid neoplasms with germline predisposition and potential organ dysfunction

- Germline **GATA2** P/LP variant (GATA2 deficiency)
- Bone marrow failure syndromes
 - Severe congenital neutropenia (SCN)
 - Shwachman-Diamond syndrome (SDS)
 - Fanconi anemia (FA)
- Telomere biology disorders
- RASopathies (Neurofibromatosis type 1, CBL syndrome, Noonan syndrome, or Noonan syndrome-like disorders)
- Down Syndrome
- Germline **SMAD9** P/LP variant (MIRAGE syndrome)
- Germline **SAMD9L** P/LP variant (SAMD9L-related ataxia pancytopenia syndrome)
- Germline **BLM** P/LP variant (Bloom syndrome)

Prepared by the Association for Molecular Pathology Training and Education Committee. For more educational resources, see: www.amp.org/AMPEducation