Molecular In My Pocket™...

ONCOLOGY: Acute Myeloid Leukemia

Work-up

Suspected acute leukemia

Morphology Flow cytometry

Cytogenetics

Molecular genetic analysis

Acute myeloid leukemia

B or T lymphoblastic leukemia/lymphoma

Mixed phenotype acute leukemia

Acute Myeloid Leukemia with Defining Genetic Abnormalities

Acute promyelocytic leukemia with PML::RARA fusion

- Good prognosis
- t(15;17)(q13.4;q21.2)
- Kidney-shaped or bilobed blasts with granules +/- Auer rods (often multiple)
- Other variants Cells with regular nuclei, many granules, absence of Auer rods, pelgeroid neutrophils, strong MPO
 - IRF2BP2::RARA; t(1;17)(q42.3;q21.2)
 - NUMA1::RARA; t(11;17)(q13.4;q21.2)
 - NPM1::RARA; t(5;17)(q35.1;q21.2)
 - STAT5B::RARA or STAT3::RARA; t(17;17)(q21.2;q21.2), inv(17), del(17)
 - ZBTB16::RARA; t(11;17)(q23.2;q21.2)
 - TBL1XR1::RARA; t(3;17)(q26.3;q21.2)
 - FIP1L1::RARA; t(4;17)(q12;q21.2)
 - BCOR::RARA; t(X;17)(p11.4;q21.2)
- Associated with disseminated intravascular coagulation
- Sensitive to ATRA/arsenic trioxide
 - some variant, such as ZBTB16::RARA and STAT5B::RARA are ATRA resistant

AML with RUNX1::RUNX1T1 fusion; t(8;21)(q22;q22.1)

- Good prognosis
- Blasts with basophilic cytoplasm, azurophilic granules and perinuclear hofs; may show pseudo-Chédiak-Higashi granules and/or single, long Auer rods with tapered ends
- Neutrophils may show pseudo-Pelger-Huët nuclei and salmon pink granules
- ≥ 70% have additional karyotypic abnormality: -X, del(9q)
- Presence of KIT mutation and CD56 expression associated with worse prognosis; ASXL1/2, KRAS, NRAS mutations may also be seen

AML with CBFB::MYH11 fusion

- Good prognosis
- inv(16)(p13.1q22) or t(16;16)(p13.1;q22)
 - likely need FISH/RT-PCR subtle rearrangement
- Blasts with abnormal eosinophils (immature eosinophilic/basophilic granules, dense and purple-violet in color)
- Secondary cytogenetic abnormalities include +22 and +8 (each occurring in 10-15% of cases), del(7q) and +21 (in 5%)
- KIT mutations in exons 8 and 17 (in 30-40%); worse
 prognosis
- Other mutations: NRAS (in 45%), KRAS (in 13%), FLT3 (in 14%' worse prognosis)

AML with KMT2A rearrangement

- ≥80 KMT2A fusion partners described, with MLLT3, AFDN, ELL, and MLLT10 being most common; most poor prognosis
- KMT2A::MLLT3; t(9;11)(p21.3;q23.3); Intermediate prognosis
- Adults often have high blast counts at presentation, usually with monocytic differentiation
- In children, AML with KMT2A::MLLT3 and KMT2A::MLLT10 show megakaryoblastic differentiation and/or low blast counts
- May present with DIC, myeloid sarcoma, gingival hyperplasia
- May need FISH/other molecular techniques for identification due to subtle translocations
- MECOM overexpression is common; worse prognosis

AML with DEK::NUP214 fusion

- Poor prognosis
- t(6;9)(p23;q34.1); mostly sole karyotypic abnormality
- Blasts with/without monocytic features
- Associated with basophilia and multilineage dysplasia
- FLT3-ITD mutations are common; may benefit from FLT3 inhibitors

AML with MECOM rearrangement

- Poor prognosis
- inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)
- May have normal or elevated platelet counts, hepatosplenomegaly
- Peripheral blood may include hypogranular neutrophils with pseudo-Pelger-Huët nuclei, giant and hypogranular platelets with bare megakaryocytic nuclei
- Associated with increased dysplastic megakaryocytes with monolobated or bilobed nuclei, and multilineage dysplasia
- Often associated with -7 (>50% of cases), del(5q) and complex karyotypes
- Also associated with mutations of RAS/receptor tyrosine kinase signaling pathways (NRAS, PTPN11, FLT3, KRAS, NF1, CBL, KIT)
- Other associated mutations: GATA2, RUNX1, SF3B1

AML with RBM15::MRTFA fusion

- · Poor prognosis
- t(1;22)(p13.3;q13.1); mostly sole karyotypic abnormality
- · Uncommon; may be congenital
- Infants and children age ≤3 years
- Small and large megakaryoblasts admixed with undifferentiated blasts; dense fibrosis

AML with BCR/ABL1 fusion

- ≥20% blasts required
- De novo AML in patients with no evidence of CML before/after therapy
- Present with less splenomegaly, less basophilia, lower cellularity, fewer dwarf megakaryocytes, normal M:E ratio compared with blast transformation of
- Most cases show the p210 fusion (most commonly b2a2 and b3a2 fusions);
 minority show p190 fusion
- Associated with -7, +8 and complex karyotypes
- May be associated with NPM1 and FLT3-ITD, loss of IKZF1 and CDKN2A and cryptic deletions in IGH and TRG genes (not seen in blast transformation of CML)

Acute Myeloid Leukemia with Defining Genetic Abnormalities (cont'd)

AML with NUP98 rearrangement

- >30 fusion partners
- Rearrangement may be cryptic
- Many associated with overexpression of HOXA9; poor prognosis

AML with NPM1 mutation

- Overall good prognosis; poorer prognosis with presence of FLT3-ITD +/- DNMT3A
- Blasts often show monocytic features
- Multilineage dysplasia seen in up to 25% of cases
- Usually associated with normal karyotype
- del(9q), +8 seen in 5-15% of cases
- Secondary mutations include FLT3, DNMT3A, IDH1/2, KRAS, NRAS
- · Up-regulation of HOX gene

AML with mutated TP53

- Very poor prognosis
- Typically associated with complex karyotype
- Although multi-hit TP53 is required for MDS with mutated TP53, in AML and MDS/AML with mutated TP53, any pathogenic TP53 mutation VAF >10% is sufficient.

Pure erythroid leukemia is typically associated with TP53 mutations, and these cases should be classified as AML with mutated TP53.

AML with CEBPA mutation

- 20% blasts required
- Favorable prognosis
- Includes biallelic (biCEBPA) and single mutations located in the basic leucine zipper region of the gene (smbZIP-CEBPA)
- No distinct morphologic features (usually have features of AML with/without maturation)
- Higher expression of HLA-DR, CD7 and CD15
- Presence of biCEBPA should raise possibility of germline mutation
- >70% of cases associated with normal karyotype;
 del(9q) may also be seen
- GATA2 mutations seen in 39% of cases, FLT3-ITD in 5-9% of cases

Acute myeloid leukemia, myelodysplasia-related (AML-MR)

AML with other defined genetic alterations"Landing spot" for emerging or rare entities

Diagnosis requires:

- ≥20% blasts required by WHO; 10% blasts by ICC
- Either: history of MDS or MDS/MPN, or MDSrelated cytogenetic abnormality or somatic mutation
- Absence of prior cytotoxic or radiation therapy for unrelated disease or AML-defining recurrent genetic abnormality

4 subclassifications (ICC only)

- AML with myelodysplasia-related cytogenetic abnormalities
- AML and MDS/AML with myelodysplasia-related gene mutations
- AML and MDS/AML with mutated TP53
- AML, NOS

ML-MR-defining cytogenetic abnormalities

- Complex karyotype (≥3 abnormalities)
- Luis) :/s)
- del(5q), t(5q)
- -7, del(7q)
- del(11q)
- del(12p)
- -13 or del(13q)
- Isochromosome 17g, del(17p)
- idic(X)(q13)

AML-MR-defining somatic mutations

- ASXL1
- BCOR
- EZH2
- SF3B1
- SRSF2
- STAG2
- U2AF1
- ZRSR2
- RUNX1 (ICC only)

Eosinophilia

Myeloid/Lymphoid Neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK)

- Broad range of histologic types MPN, MDS, MDS/MPN, AML, MPAL, B-ALL, T-ALL
- Eosinophilia common feature but may be absent in some cases
- Sensitive to tyrosine kinase inhibitor (TKI) therapy
- Defining genetic abnormalities
 - PDGFRA rearrangement (often del(4)(q12q12); FIP1L1::PDGFRA)
 - PDGFRB rearrangement (often t(5;12)(q32;p12); ETV6::PDGFRB)
 - FGFR1 rearrangement
 - JAK2 rearrangement (often t(8;9)(p22;p24.1);PCM1::JAK2
 - FLT3 rearrangement
 - ETV6::ABL1 fusion (separate from B-ALL with ETV6::ABL1) and other ETV6 rearrangement (ETV6::FGFR2; ETV6:LYN; ETV6::NTRK3; RANBP2::ALK)
 - Other MLN-TK (more is accrued): BCR::RET; FGFR10P::RET
- Mostly, long-term survival option is bone marrow transplant

Myeloid neoplasms post cytotoxic therapy (MN-pCT)

- · Poor prognosis
- Requires a documented history of chemotherapy (e.g. alkylating agents, topoisomerase II inhibitors, antimetabolites, antitubulin agents) or large-field radiation therapy for an unrelated condition
- De novo AML with defining genetic abnormality, such as NNPM1 mutation and CBF AML, post cytotoxic therapy should be assigned to this category based on medical history
- Majority AML-pCT and MDs-pCT associated with TP53 mutations; worse outcomes with biallelic (multi-hit) TP53 alterations
- Less frequent mutations involving genes such as PPM1D or DNA-damage response genes require consideration of a germline predisposition

Secondary myeloid neoplasms Myeloid neoplasms associated with germline

predisposition Myeloid neoplasms with germline predisposition without a pre-existing platelet disorder or organ dysfunction

- Germline CEBPA P/LP variant (CEBPAassociated familial AML)
- Germline DDX41 P/LP variant
- Germline TP53 P/LP variant (Li-Fraumeni syndrome)
- Myeloid neoplasms with germline predisposition and pre-existing platelet disorder
 - Germline RUNX1 P/LP variant (familial platelet disorder with associated myeloid malignancy, FPD-MM)
 - Germline ANKRD26 P/LP variant (Thrombocytopenia 2)
 - Germline ETV6 P/LP variant (Thrombocytopenia 5)

- Myeloid neoplasms with germline predisposition and potential organ dysfunction
 - Germline GATA2 P/LP variant (GATA2deficiency)
 - Bone marrow failure syndromes
 - Severe congenital neutropenia (SCN)
 - Shwachman-Diamond syndrome (SDS)
 - Fanconi anemia (FA)
 - Telomere biology disorders
 - RASopathies (Neurofibromatosis type 1, CBL syndrome, Noonan syndrome or Noonan syndrome-like disorders)
 - Down Syndrome
- Germline SMAD9 P/LP variant (MIRAGE syndrome)
- Germline SAMD9L P/LP variant (SAMD9L-related ataxia pancytopenia syndrome)
- biallelic germline BLM P/LP variant (Bloom syndrome)